欧美经典成人在观看线视频_嫩草成人影院_国产在线精品一区二区中文_国产欧美日韩综合二区三区

向量積公式為為什么有sin(向量叉積的定義和應用)

向量積公式為為什么有sin(向量叉積的定義和應用)

棟鴻福 2025-04-11 科技 22 次瀏覽 0個評論

如果我們把兩個向量相乘,得到另一個向量它垂直于兩個原向量。 這個操作就是求叉積。 我們可以用叉積求出垂直于兩個給定向量的方向,求出兩個向量張成的面積,確定兩個向量是否正交,等等。 那么,什么是叉積呢?

向量叉積的定義和應用

兩個向量的叉積得到一個垂直于由兩個原向量組成的平面的向量。

什么是叉積?

首先,我們可以求兩個三維向量的叉積! 這是對兩個三維向量進行的運算結(jié)果是第三個向量垂直于兩個原始向量,其大小是第一個向量的大小乘以第二個向量的大小再乘以兩個向量夾角的正弦。

我們回顧一下向量,請參考向量的基礎知識

向量叉積的定義和應用

在上圖中,我們有一個向量v→。 這個矢量的大小就是它的長度,矢量的方向已經(jīng)顯示出來了。現(xiàn)在,如果我們求兩個向量a→和b→的叉積,其結(jié)果將是c→,如下圖所示:

向量叉積的定義和應用

注意,當求叉積時,你可能會注意到兩個垂直于兩個原向量的方向。 向上和向下。 為了找出外積的方向,我們要用到右手定則。

用右手法則,你握住右手,食指指向第一個矢量的方向。然后,把中指轉(zhuǎn)向第二個矢量的方向。舉起你的大拇指。你的拇指現(xiàn)在應該指向叉乘向量的方向。

向量叉積的定義和應用

請注意,如果你改變向量的順序(切換a→和b→),叉積向量的方向?qū)⑾喾础?因此,叉積運算是不可交換的; 順序很重要!

叉積的公式

正如我們提到的,外積是定義在三維向量上的。 我們可以把向量寫成分量的形式,例如,取向量a→,

向量叉積的定義和應用

x分量是a1, y分量是a2, z分量是a3。 現(xiàn)在,讓我們考慮如下所示的兩個向量:

向量叉積的定義和應用

a→和b→的叉積由公式給出:

向量叉積的定義和應用

這個公式記起來有點乏味。 但是不要擔心,這個公式來自于3×3矩陣的行列式。

回想一下2×2矩陣和3×3矩陣的行列式公式(請參考行列式的基本概念)。

對于二階方陣:

向量叉積的定義和應用

行列式的值為:

向量叉積的定義和應用

對于一個3階的方陣:

向量叉積的定義和應用

行列式的值為:

向量叉積的定義和應用

現(xiàn)在, 我們可以把向量a→和b→寫成3×3矩陣的行列式形式,如下所示:

向量叉積的定義和應用

將其打開分離:

向量叉積的定義和應用

這就是我們剛才展示的公式!

注意:向量i→,j→和k→是標準基向量,它們必須按照給定的順序出現(xiàn)。

單位向量的叉積有:

向量叉積的定義和應用

怎樣計算叉積

我們來看一個求向量a和向量b,向量b和向量a的叉積的例子, 若:

向量叉積的定義和應用

求axb, 和bxa

先求axb,

我們將把這兩個向量寫成3×3矩陣的形式,并用已知的行列式公式計算外積。 步驟如下:

向量叉積的定義和應用

我們再求bxa:

向量叉積的定義和應用

注意,改變向量在叉乘中的順序改變了所有符號! 這意味著這兩個叉乘在方向上是相反的! 我們在上面學習右手法則時就注意到了這個事實!

向量叉積的一個重要應用是給定兩個共點向量,求其形成的平行四邊形面積。

首先我們要證明向量叉積的矢量長度滿足以下公式:

向量叉積的定義和應用

現(xiàn)在我們證明這個公式,假設向量u, 和v,

讓 u = ? u1, u2, u3 ? , v = ? v1, v2, v3 ? ,它們的夾角為θ,那么:

向量叉積的定義和應用

所以:

向量叉積的定義和應用

因此有兩個向量的叉積的模(長度)公式:

向量叉積的定義和應用

向量叉積的定義和應用

根據(jù)向量叉積定義,從上圖可以看出,平行四邊形的面積為:

向量叉積的定義和應用

若向量a, b分別給出, 那么它們所形成的平行四邊形面積見下面的計算:

向量叉積的定義和應用

根據(jù)上面的推導,可知a, b的矢量積的模即為面積。

向量叉積的定義和應用

矢量的點積與叉積的混合積可以計算棱柱的體積, 如圖:

向量叉積的定義和應用

此外,利用矢量積的叉乘,若夾角為0, 那么sinθ=0為零,即:

向量叉積的定義和應用

可以得出a, b平行的條件:

我們可以推出:

向量叉積的定義和應用

也就是:

向量叉積的定義和應用

由此推出兩個向量平行的充分必要條件是:

向量叉積的定義和應用

轉(zhuǎn)載請注明來自夕逆IT,本文標題:《向量積公式為為什么有sin(向量叉積的定義和應用)》

每一天,每一秒,你所做的決定都會改變你的人生!

發(fā)表評論

快捷回復:

評論列表 (暫無評論,22人圍觀)參與討論

還沒有評論,來說兩句吧...